A quantum emitter efficiently coupled to a nanophotonic waveguide constitutes a promising system for the realization of single-photon transistors, quantum-logic gates based on giant single-photon nonlinearities, and high bit-rate deterministic single-photon sources. The key figure of merit for such devices is the β factor, which is the probability for an emitted single photon to be channeled into a desired waveguide mode. We report on the experimental achievement of $\beta = 98.43 \pm 0.04\%$ for a quantum dot coupled to a photonic crystal waveguide, corresponding to a single-emitter cooperativity of $c = 62.7 \pm 1.5$. This constitutes a nearly ideal photon-matter interface where the quantum dot acts effectively as a 1D "artificial" atom, since it interacts almost exclusively with just a single propagating optical mode. The β factor is found to be remarkably robust to variations in position and emission wavelength of the quantum dots. Our work demonstrates the extraordinary potential of photonic crystal waveguides for highly efficient single-photon generation and on-chip photon-photon interaction.
efficiency of $\beta = 98.43\% \pm 0.04\%$ for a QD in a PCW, which significantly surpasses previously reported results exploiting atoms [20,38], nitrogen vacancy centers [39], single molecules [3], or quantum dots [4,23,40] as the photon sources in photonic-waveguide structures. This corresponds to a single-emitter cooperativity $\eta = 62.7 \pm 1.5$, which surpasses by almost 1 order of magnitude previously reported values both with QDs [23] and atoms [20]. Such a high coupling efficiency matches the level achievable with superconducting microwave circuits, widely considered one of the most mature platforms for scalable quantum-information processing available today, and will lead to novel opportunities for photonic quantum-information processing [41].

A near-unity β factor PCW SP source is illustrated in Fig. 1(a): a deterministic train of SPs in the waveguide can be obtained since the excited QD will emit a photon into the waveguide with probability β, while out-of-plane photon loss is strongly suppressed. High β factors are achievable due to the combination of two effects: a broadband Purcell enhancement of the rate Γ_{wg} of coupling into the waveguide and the strong suppression of the loss rate Γ_{rad} due to the photonic crystal membrane structure. Different physical systems have been proposed for obtaining a large β factor: plasmonic nanowires rely on the Purcell enhancement thereby increasing Γ_{wg} [40], while dielectric nanowires [4,39] mainly suppress the coupling to radiation modes, i.e., decrease Γ_{rad}. In PCWs the beneficial combination of the Purcell enhancement of the PCW mode and the pronounced reduction of radiation modes enables a near-unity β factor.

In PCWs the Purcell enhancement is proportional to the group index or slow-down factor $n_g = c/v_g$, where c is the speed of light in vacuum. The group velocity of light, v_g, is the slope of the waveguide band, see Fig. 1(b), which decreases at the waveguide band edge. We have measured $n_g > 50$ close to the band edge, leading to expected Purcell factors close to 10 [21]. For the method used to extract the n_g, see Ref. [28]. Furthermore, the photonic crystal band gap strongly inhibits the in-plane radiative loss rate of the dipole emitter, while total internal reflection limits the decay by out-of-plane radiation.

The calculated position dependent β factor for a dipole emitter in proximity of the band edge ($n_g = 58$) and close to the light line ($n_g = 5$) is shown in Fig. 1(e). The fraction of the emission coupled to the waveguide and to the radiation modes can be determined numerically, and Γ_{wg} and Γ_{rad} are obtained by multiplying by the measured average radiative decay rate of QDs in a homogeneous medium $\Gamma_{\text{hom}} = 0.91 \pm 0.08$ ns$^{-1}$. The measured average nonradiative decay rate is $\Gamma_{\text{nr}} = 0.030 \pm 0.018$ ns$^{-1}$. In the slow-light regime ($n_g = 58$), β factors exceeding 95% are predicted for dipole positions close to the field maxima of the waveguide mode [Fig. 1(d)]. In agreement with previous results [21,22], even outside the slow-light regime ($n_g = 5$), β factors exceeding 90% are predicted for many positions in the waveguide, illustrating the very broadband coupling. The position dependence of the β factor, that is displayed in Fig. 1(e), is determined by the spatial mode profiles of the guided modes shown in Figs. 1(c)–1(d).

We investigate light emission from a single layer of self-assembled InAs QDs embedded in a GaAs PCW (see Ref. [28] for sample description). In order to efficiently collect the photons from the propagating waveguide mode,
either second-order Bragg gratings [42] or inverse tapered mode adapters [43] are used. A numerical study of the coupling efficiency of the two outcoupling methods is presented in Ref. [28]. Scanning-electron microscope images of typical devices are shown in Figs. 2(a)–2(c). Since the mode adapters are designed to work in the regime of low \(n_g \), a transition region is introduced in the photonic crystal in order to couple from the high-\(n_g \) waveguide mode into the low-\(n_g \) mode [44]. The length of the high-\(n_g \) region varies between 5.1 and 8.3 \(\mu m \) for different samples; a short sample length is chosen to eliminate the formation of Anderson-localized modes [45], which are detrimental for obtaining a high waveguide transmission. The averaged extinction length for light propagation in similar waveguides was measured to be \(l \approx 30 \mu m \) [46].

Figure 2(d) shows a high-power photoluminescence spectrum of the waveguide mode collected from the grating under nonresonant excitation, which is used to characterize the waveguide samples. The applied power is approximately 2 orders of magnitude higher than the saturation power of single excitons; i.e., single QD lines cannot be distinguished in this case. The spectrum displays a cutoff at 925 nm due to the waveguide band edge and a transmission bandwidth of 35 nm. Similar spectra were obtained when collecting the emission from the inverse tapers. We also investigated waveguide structures where a change in parameters of the gratings led to high reflectivity and the formation of sharp Fabry-Pérot (FP) resonances within the waveguide bandwidth, as shown in Fig. 2(f). In these structures the coupling to the waveguide mode for QDs spectrally positioned in between two resonances is expected to be very weak due to the inhibition of the local density of optical states, implying that the measured \(\Gamma_{\text{uc}} \) is close to the lower limit of \(\Gamma_{\text{rad}} + \Gamma_{\text{nr}} \). This is confirmed by the experiment, as discussed below.

Time-resolved photoluminescence spectroscopy is employed to characterize the dynamics of QDs in a 20 nm range, blue-detuned from the band edge cutoff. For each QD line, decay curves are measured at an excitation power level well below saturation, see Fig. 2(h). For details on how the decay curves are modeled, see Ref. [28].

We extract Purcell-enhanced decay rates of up to \(\Gamma_c = 6.28 \pm 0.15 \text{ ns}^{-1} \) in the high-\(n_g \) waveguide sections [Fig. 2(e)] and inhibited decay rates down to \(\Gamma_{\text{uc}} = 0.098 \pm 0.001 \text{ ns}^{-1} \) between two FP resonances in the low-\(n_g \) waveguide section [Fig. 2(g)]. This corresponds to \(\beta = 98.43\% \pm 0.04\% \). The uncertainty of this value has been extracted from the error of the fit. We have measured the \(\beta \) factor for a total of 71 different QDs within a 20 nm range in both the samples with grating and taper mode adapters, and the results are shown in Fig. 3. In both samples, the \(\beta \) factors are above 90% for most of the QDs in a 5 nm range close to the edge of the band-gap region, and we measure \(\beta \) factors above 90% for QDs up to 20 nm spectrally detuned from the band edge, thus highlighting the robustness of these devices. These results agree very well with the theoretical predictions of Fig. 1(e), which shows that QDs with a \(\beta \) factor above 90% can be expected even at \(n_g = 5 \) for specific positions in the waveguide. In the following we will focus on the highest \(\beta \) factors found for QDs in the proximity of the band edge. The SP nature of the emission lines is confirmed by recording the normally ordered second order intensity correlation function \(g^{(2)}(\tau) = \langle I(t)I(t+\tau) \rangle / \langle I(t) \rangle^2 \).
under pulsed excitation. An example of a measurement for the highest β factor QD of Fig. 2(e) is shown in Fig. 2(i), where $g^2(0) = 0$. Since the criterion for single-photon emission is $g^2(0) < 0.5$, our result clearly demonstrates single-photon emission from the QD. For further details about the analysis of $g^2(\tau)$, see Ref. [28]. Even stronger antibunching has been observed for QDs in spectrally very clean regions of the waveguide mode reaching $g^2(0) < 0.05$ at excitation powers below the saturation level.

The applied method for extracting the β factor by comparing Γ_c and Γ_{uc} of two different QDs is valid since the variation of the total loss rate $\Gamma_{rad} + \Gamma_{nr}$ between different QDs is small. Indeed, the variations in Γ_{nr} over the wavelength range of relevance can be neglected [47] while the spatial variation of Γ_{rad} has been calculated as shown in Fig. 4(b) for an efficiently ($n_g = 58$) and weakly coupled ($n_g = 7$) QD. The chosen values of n_g correspond to the cases of the QDs shown in Figs. 2(e) and 2(g). For most positions, Γ_{rad} is found to be lower than the experimental estimate based on $\Gamma_{rad} = \Gamma_{uc} + \Gamma_{nr}$ [indicated by the dashed line in Fig. 4(a)], which is expected since residual coupling to the waveguide will increase the rate. At a few spatial positions in Fig. 4(a), the predicted Γ_{rad} is found to be higher than the experimental rate. However, as displayed in Fig. 4(b) these are not the positions where the large Purcell-enhanced decay rates observed in the experiment appear [experimental values indicated by the dashed line in Fig. 4(b)], and we can thus exclude that the QDs with the highest β factor are positioned here, implying that the record-high β factors constitute conservative estimates.

In conclusion, we have for the first time unambiguously measured a near-unity β factor in a PCW, and have shown the robustness of β with respect to the wavelength and the spatial position of the emitter in the PCW. This result proves the high potential of PCWs to achieve strong on-chip light-matter coupling between a QD and a propagating mode, which opens the way for the realization of transistors and gates for deterministic quantum information processing. To this end highly coherent photon emission is required, and decoherence processes have been found to be slow for quasiresonant excitation of QDs in photonic crystals [48,49] and could be further extended by applying true resonant excitation [50–52]. Furthermore, a highly efficient SP source can be built by optimizing the outcoupling mode adapters of our structures, making the source immediately applicable for linear-optics quantum-computing experiments.

We acknowledge fruitful discussion with Anders S. Sørensen. We thank Sara Ek for her input into the design of the tapered structures. We gratefully acknowledge financial support from the Danish Council for Independent

FIG. 3 (color online). (a) β factors measured on the grating samples and (b) on the samples with tapered waveguides. In both figures, the band gap region above the waveguide cutoff is indicated in grey.

FIG. 4 (color online). (a) Position-dependent radiative loss rate for a y-polarized (squares) or x-polarized (circles) dipole emitting at either $n_g = 58$ in the high-n_g waveguide section (red data) or $n_g = 7$ in the low-n_g waveguide section (blue data). The shaded region indicates where the predicted Γ_{rad} is above the experimentally extracted value of 0.068 ± 0.008 ns$^{-1}$. (b) Calculated radiative rate as a function of position for a dipole aligned along the y direction (squares) or the x direction (circles) and emitting at $n_g = 58$. The corresponding emitter positions are indicated in the inset of Fig. 1(e). The shaded region indicates where the predicted decay rate is above the experimentally extracted value of 6.28 ± 0.15 ns$^{-1}$ for the high-β-factor QD.
Research (Natural Sciences and Technology and Production Sciences) and the European Research Council (ERC consolidator grant ALLQUANTUM). I. S. and M. A. contributed equally to this work.

*sollner@nbi.ku.dk
lodahl@nbi.ku.dk; http://quantum-photonics.nbi.ku.dk

