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To decay or not to decay - or both! Quantum mechanics of

spontaneous emission
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Abstract We discuss calculations of spontaneous emission from quantum dots in photonic crystals and show how the decay
depends on the intrinsic properties of the emitter as well as the position. A number of fundamentally different types of spon-
taneous decay dynamics are shown to be possible, including counter intuitive situations in which the quantum dot decays

only partially.

Introduction

Spontaneous emission of light is often thought of as
being a property of the emitter only. Likewise, the
decay is often thought of as being a Markovian pro-
cess resulting naturally in a decaying exponential
function as known from other types of decay in
nature. Neither of the two conceptions are true in
general, though, as the inherent quantum mechani-
cal nature of the decay dynamics involves both pro-
perties of the emitter and the environment. Howe-
ver, setting up experiments or designing devices to
demonstrate or even exploit the general quantum
mechanical decay dynamics is hard, as one needs to
fully contol both the emittter and the surrounding
environment.

The invention of photonic crystals [1, 2] has provi-
ded enhanced control of light propagation in mate-
rials. This, combined with recent advances in the
manufacturing of self-assembled quantum dots
(QDs), provides the means for novel solid state qu-

antum optics experiments and devices focussing on
spontaneous emission. Indeed, state of the art ma-
nufacturing techniques allow for a precise positio-
ning of a quantum dot in the center of a high quality
optical cavity [3].

Whereas many optical phenomena may be adequa-
tely described in a semiclassical model, sponta-
neous decay of an initially excited emitter can only
be understood in a framework in which both the
emitter and the light field is quantized. For this rea-
son, measurements of spontaneous emission are of
interest from a fundamental physics point of view
(See also discussion of controlled spontaneous
emission from quantum dots with photonic crystals
in DOPS-NYT 3, 2004).

In this article we discuss the basic principles behind
the quantum optical description of spontaneous
emission from quantum dots. Given the quantum
nature of both light and matter this can be un-
derstood to some extent as the dynamics of coupled

Fig. 1. Spontaneous emission inside a photonic crystal. The periodic structure of the surrounding material has a

profound effect on the decay dynamics.

DOPS-NYT 1-2008



oscillators. Using a full quantum optical description,
Wigner and Weisskopf were the first to show how the
coupling of an atom to the continuum of modes in
vacuum will lead to an exponential decay [4]. In gene-
ral, the spectral distribution of optical modes in the
surrounding environment may lead to a suppression or
an enhancement of the spontaneous emission, known
as the Purcell effect [5]. It may even change the quali-
tative behavior of the decay dynamics. In particular
the decay needs not always be exponential, and the
emitter needs not always to decay fully.

Quantum dots and photonic crystals

QDs allow for confinement of electron motion to lim-
ited regions of the host dielectric. This leads to a quan-
tization of the allowed electron energy levels as known
from atomic physics, but realized in semiconductor
materials. Also, this gives the possibility to design the
energies simply by changing the QD sizes and shapes.
In semiconductors, excitations appear as the creation
of an electron-hole pair, subject to a number of many
particle effects, e.g. coulomb interactions. However,
for modelling purposes we may simply regard the QD
as a two level system with a ground state |g>, and an
excited state |e>, similar to the electronic states of an
atom. Also, as in the case of atoms, the QDs have an
intrinsic dipole moment. This dipole moment, as we
shall see, plays an important role in the design of no-
vel solid state quantum optics experiments.

Photonic crystals (PCs) are periodic structures with a
period on the order of the wavelength of light, typical-
ly made from a dielectric with a high refractive index
(Si, n~3.45). Multiple scattering from the periodic
structure leads to photonic band gaps, frequency inter-
vals in which no electromagnetic field modes are allo-
wed to propagate in the material. Such materials are
ideally suited for the creation of optical cirquits and
even cavities where light may in principle be perfectly
confined. In practice, the manufacturing of full three
dimensional photonic crystals has proven to be very
difficult. One successfull methods is the so-called in-
verse opals, made by infiltrating an fcc crystal of po-
lysterene spheres with dielectric and subsequently
evaporating the polysterene, leaving a complicated
periodic structure. The inset of figure 3 shows the final
structure of an inverse opal crystal.
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Fig. 2. Spontaneous emission dynamics. An electron ini-
tially in an excited state interacts with a virtual photon of
the vacuum fluctuations and undergoes a transition to
the ground state. In the process a photon of frequency ®.,
is emitted.
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Fig. 3. Example of the LDOS, p, (in units of mzcg/3n2c3) as
a function of scaled frequency w/w,, at two different posi-
tions inside one of the air holes in a silicon inverse opal
photonic crystal. The grey dashed curve shows the
quadratic behavior of the LDOS in vacuum. Vertical
black lines indicate the edges of the photonic band gap.

The periodic structure may be characterized in every
point by the local optical density-of-states (LDOS),
typically denoted py(r,@). The LDOS descibes the
availability of optical modes of a given frequency at
the position of the emitter, and is central in the calcu-
lations of spontaneous emission.

Spontaneous emission

In the following we will briefly discuss how the spon-
tanous emission can be calculated based on a fully
quantized description of both emitter and radiation
field. The quantum dot is described as a two-level sy-
stem with two electronic energy levels, denoted |e>
and |g>. Similarly, the electromagnetic field modes are
written as either [0>, denoting the vacuum state, or
|>, denoting the state of a single photon of combined
wave vector and polarization (k, s) = y. The dynamics
of the spontaneous emission process is illustrated in
figure 2. An electron initially in an excited state inte-
racts with the vacuum state of the electromagnetic
field and undergoes a transition to the ground state. In
the process a photon is emitted. Based on this scenario
we write up a combined state of the electron and pho-
ton system as:

‘\I/> = Ce(f) |(f7 0> + Z(7g‘,;l(t) ‘!/ﬂ/l>’ (1)

where we have used the notation |e, 0> for the product
state |e>®|0> and the sum runs over all modes of the
electromagnetic field. The state evolves in time accor-
ding to the Schrédinger equation where the Hamilto-
nian is usually taken in the dipole and rotating wave
approximation [6, 7].

The absolute square of the excited state expansion
coeffecient, |c.(f)]* denotes the probability that the
electron is in the excited state at time 7. Using the Ha-
miltonian in the dipole and rotating wave approxima-
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tion, it can be shown that the coefficient is given as the
solution to the complicated integro differential equa-
tion

5 t) =

N
- / / Cce(t) e Wmweg) (=) pp(r,w) dt' dw,  (2)
0 0 w

in which « denotes the light-matter coupling strength
(which is proportional to the dipole moment) and
Pp( @) is the projected LDOS defined as:

pp(r.w) = Z lep - e‘,|2 ‘Eu(r)P 6w —wp), (3)
b

in which e, and e, are unit vectors in the directions of
the dipole moment and the electric field, respectively,
and &,(r) is a properly normalized wave function for
the electric field amplitude, evaluated at the location
of the emitter, r. In a homogeneous material of refrac-
tive index n, the projected LDOS is given as
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Fig. 4. Top: Different examples of model LDOS (in units
of (nzeg/3n2c3) as a function of normalized frequency. Solid
blue line is the LDOS of vacuum. Dashed red line cor-
responds to an enhanced LDOS, for example in an opti-
cal cavity. Dashed-dotted green line corresponds to the
LDOS in a high quality cavity supporting only a single,
resonant mode. Bottom: Corresponding decay curves for
an emitter subject to the LDOS in the top figure.

Fig. 5. Fractional decay curves for emitters with frequen-
cies close to the frequency defining the edge of a band
gap, wpg. The figure shows examples for 4 different detu-
nings, A = (0—@pg)/ Wey-
nw?

pll(wﬂr) = 3 2 3"

w2 c .

In general, however, tne LUU> may change dramati-
cally as a function of frequency (and position). Figure
3 shows examples of LDOS curves calculated for two
different position inside a photonic crystal. The crystal
is designed to have a band gap which is present at all
positions in the crystal. Since the LDOS is zero inside
the gap, no electromagnetic modes with frequencies in
this inverval are allowed to propagate in the material.

The only free parameters in Eq. (2) are the coupling
strength and the LDOS. These two combined define
the temporal evolution of the emitter subject to the
vacuum fluctuations.

Different decay dynamics

The integro differential equation may be solved in a
number of ways. One convenient method is that of the
Laplace transform [6]. In the frequency domain, va-
rious terms in the solution may be easily identified as
poles in the spectrum. The solution in the time domain
then depends on the number of poles and their relative
strength and position in the (complex) frequency pla-
ne. Depending on the variations in the LDOS and the
light-matter coupling strength the decay may happen
in a number of fundamentally different ways. Figure 4
shows examples of decay curves calculated using three
different model LDOS.

Markovian decay

When interacting with a continuum of electromagnetic
modes, the decay is a Markovian process. Once the
energy is transferred from the emitter to the electro-
magnetic field it is irreversibly lost and the emitter
ends up in the ground state. A continuum of modes in
the language of Eq. (2) amounts to a LDOS that varies
slowly as a function of frequency. In this case the
equation can be readily solved to reveal an exponential
decay |c.(7)]* = exp(~77) with a rate proportional to the
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Figure 6: Top: Exponential decay characteristic of a single oscillator interacting with a continuum of modes. Mid-
dle: Interaction of two oscillators leading to continuous interchange of energy between the two known as vacuum
Rabi oscillations. Bottom: A single oscillator interacting with a detuned continuum of modes leading to fractional

decay.

product of the coupling strength, ¢, and the LDOS at
the emission frequency:

I' x app(weg) 4)

From this relation it follows directly, that the rate of
spontaneous emission may be suppressed or enhanced
relative to the rate in vacuum, I’y (solid blue line in
figure 4), by changing the distribution of optical mo-
des at the location of the emitter (dashed red line in
figure 4). This is the famous Purcell effect [5].

Vacuum Rabi oscillations

If the emitter can interact only with a single mode of
the electromagnetic field there will be an interchange
of energy back and forth between the emitter and the
field known as vacuum Rabi oscillations. This may
happen in cavities of very high quality, for example in
photonic crystals. In this case, the LDOS will have a
sharp peak at the frequency of the cavity resonance
and approximate solutions to the equations can be
found as oscillations of the form |c.(7)]* = cos(k) at a
frequency « that is proportional to the product of the
coupling strength and the LDOS at the emission fre-
quency. The dashed-dotted green line in figure 4 is
calculated for the case of a cavity with a finite line-
width, leading to the slow decay of the oscillatory de-
cay curve as energy is lost to the environment.

Fractional decay
An interesting situation occurs when the emitter is
tuned spectrally very close to the sharp edge of the

DOPS-NYT 1-2008

band gap of a photonic crystal. In this case the emitter
may undergo a so-called fractional decay in which the
solution tends to a finite, non-zero value at long times.
Figure 5 shows examples of fractional decay for diffe-
rent detunings of the emitter with respect to the band
edge. For very large negative detunings, the decay is
simply exponential, as the LDOS varies slowly at the-
se frequencies. As the emission frequency is scanned
closer to the band edge frequency, however, the decay
curves are seen to change dramatically. This phenome-
non clearly represents a very counter intuitive display
of the quantum nature of the decay in which the
electron is not fully excited, yet has not fully decayed
either.

The different decay mechanisms may to some extend
be understood from the dynamics of coupled oscilla-
tors [8] as illustrated in figure 6. For the case of a
slowly varying LDOS the QD oscillator interacts with
a continuum of other oscillators leading naturally to an
exponential decay. On the other hand, when the QD is
placed in a cavity with only a single electromagnetic
mode, the finite number of oscillators results in cohe-
rent interchange of energy between the two. Finally,
using the same language, we may understand the frac-
tional decay as resulting from a single oscillator inte-
racting with a detuned continuum. The interaction of
the QD with modes of low (or even zero) group velo-
city at the band edge leads to a situation in which so-
me of the energy is preserved in the system and some
is lost to the environment.
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Experimental status

On the experimental side, the manipulation of the
spontaneous decay rate in photonic crystals has been
shown in a number of experiments. These include both
the use of inverse opals [9] and so-called photonic
crystal slabs [10]. Recently the controlled positioning
of a microcavity around a single self-assembled quan-
tum dot was demonstrated [3]. This paves the way for
the use of quantum dots in photonic crystals as single-
photon sources. The high LDOS achievable in a small
cavity leads to fast decay due to the Purcell effect as
has been demonstrated in cavities in a number of sy-
stems including photonic crystal slabs [11, 12]. The
so-called strong coupling regime of an emitter interac-
ting with a single optical mode has been observed
(using spectral analysis) for cavities in’photonic
crystal slabs [13] as well as in other types of optical
cavities [14]. For a nice review of optical cavities, see
Ref. [15]. Fractional decay has yet to be experimental-
ly demonstrated. Calculations show that the effect will
be visible only if the product of the coupling strength
and the slope in the LDOS curve is sufficiently high.
In the inverse opal photonic crystals the limiting form
of the LDOS near the band edge can be shown to be a
squareroot and so in principle could lead to this coun-
ter intuitive decay. Whether it is possible to manufac-
ture a crystal of high enough purity and subsequently
place a quantum dot inside it at the correct location is
still an open question.

The improvements in quality and control of photonic
crystals and quantum dots within the last few years
have resulted in a number of very beautiful solid state
quantum optics experiments. Many of these explore
effects that may be of practical importance also outsi-
de of the laboratory. On the technolocial side, sponta-
neous emission may be used in efficient and conve-
nient single photon sources for quantum information
applications. Also, the suppression of spontaneous
emission in photonic crystals has been proposed as a
means to achieve more efficient solar cells and semi-
conductor lasers [1, 2]. Whether in quantum optical
communications, solar cells, lasers or other devices,
technologies based on solid state quantum optics ex-
ploit fascinating quantum mechanical aspects of the
light-matter interaction. With steady improvements in
the manufacturing of both quantum dots and photonic
crystals these technologies may form important parts
of future optoelectronics industries.
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